Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
2.
Int J Mol Sci ; 24(18)2023 Sep 11.
Article En | MEDLINE | ID: mdl-37762230

Simufilam is a novel oral drug candidate in Phase 3 clinical trials for Alzheimer's disease (AD) dementia. This small molecule binds an altered form of filamin A (FLNA) that occurs in AD. This drug action disrupts FLNA's aberrant linkage to the α7 nicotinic acetylcholine receptor (α7nAChR), thereby blocking soluble amyloid beta1-42 (Aß42)'s signaling via α7nAChR that hyperphosphorylates tau. Here, we aimed to clarify simufilam's mechanism. We now show that simufilam reduced Aß42 binding to α7nAChR with a 10-picomolar IC50 using time-resolved fluorescence resonance energy transfer (TR-FRET), a robust technology to detect highly sensitive molecular interactions. We also show that FLNA links to multiple inflammatory receptors in addition to Toll-like receptor 4 (TLR4) in postmortem human AD brains and in AD transgenic mice: TLR2, C-X-C chemokine receptor type 4 (CXCR4), C-C chemokine receptor type 5 (CCR5), and T-cell co-receptor cluster of differentiation 4 (CD4). These aberrant FLNA linkages, which can be induced in a healthy control brain by Aß42 incubation, were disrupted by simufilam. Simufilam reduced inflammatory cytokine release from Aß42-stimulated human astrocytes. In the AD transgenic mice, CCR5-G protein coupling was elevated, indicating persistent activation. Oral simufilam reduced both the FLNA-CCR5 linkage and the CCR5-G protein coupling in these mice, while restoring CCR5's responsivity to C-C chemokine ligand 3 (CCL3). By disrupting aberrant FLNA-receptor interactions critical to AD pathogenic pathways, simufilam may promote brain health.


Alzheimer Disease , Mice , Humans , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Filamins/metabolism , Mice, Transgenic , Peptide Fragments/metabolism
3.
Front Aging ; 4: 1175601, 2023.
Article En | MEDLINE | ID: mdl-37457922

Introduction: Implicated in both aging and Alzheimer's disease (AD), mammalian target of rapamycin (mTOR) is overactive in AD brain and lymphocytes. Stimulated by growth factors such as insulin, mTOR monitors cell health and nutrient needs. A small molecule oral drug candidate for AD, simufilam targets an altered conformation of the scaffolding protein filamin A (FLNA) found in AD brain and lymphocytes that induces aberrant FLNA interactions leading to AD neuropathology. Simufilam restores FLNA's normal shape to disrupt its AD-associated protein interactions. Methods: We measured mTOR and its response to insulin in lymphocytes of AD patients before and after oral simufilam compared to healthy control lymphocytes. Results: mTOR was overactive and its response to insulin reduced in lymphocytes from AD versus healthy control subjects, illustrating another aspect of insulin resistance in AD. After oral simufilam, lymphocytes showed normalized basal mTOR activity and improved insulin-evoked mTOR activation in mTOR complex 1, complex 2, and upstream and downstream signaling components (Akt, p70S6K and phosphorylated Rictor). Suggesting mechanism, we showed that FLNA interacts with the insulin receptor until dissociation by insulin, but this linkage was elevated and its dissociation impaired in AD lymphocytes. Simufilam improved the insulin-mediated dissociation. Additionally, FLNA's interaction with Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN), a negative regulator of mTOR, was reduced in AD lymphocytes and improved by simufilam. Discussion: Reducing mTOR's basal overactivity and its resistance to insulin represents another mechanism of simufilam to counteract aging and AD pathology. Simufilam is currently in Phase 3 clinical trials for AD dementia.

4.
Drug Dev Res ; 84(6): 1085-1095, 2023 09.
Article En | MEDLINE | ID: mdl-37291958

The decades-old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs. Subsequently, the α7 nicotinic acetylcholine receptor (α7nAChR) was proposed as a new drug target for enhancing cholinergic neurotransmission. Nearly simultaneously, soluble amyloid ß1-42 (Aß42 ) was shown to bind α7nAChR with picomolar affinity to activate kinases that hyperphosphorylate tau, the precursor to tau-containing tangles. Multiple biopharmaceutical companies explored α7nAChR as a drug target for AD, mostly to enhance neurotransmission. Directly targeting α7nAChR proved to be a drug development challenge. The ultra-high-affinity interaction between Aß42 and α7nAChR posed a significant hurdle for direct competition in the AD brain. The receptor rapidly desensitizes, undermining efficacy of agonists. Drug discovery approaches therefore included partial agonists and allosteric modulators of α7nAChR. After substantial effort, numerous drug candidates were abandoned due to lack of efficacy or drug-related toxicities. As alternatives, proteins interacting with α7nAChR were sought. In 2016, a novel nAChR regulator was identified, but no drug candidates have emerged from this effort. In 2012, the interaction of filamin A with α7nAChR was shown to be critical to Aß42 's toxic signaling via α7nAChR, presenting a new drug target. The novel drug candidate simufilam disrupts the filamin A-α7nAChR interaction, reduces Aß42 's high-affinity binding to α7nAChR, and suppresses Aß42 's toxic signaling. Early clinical trials of simufilam showed improvements in experimental CSF biomarkers and indications of cognitive improvement in mild AD patients at 1 year. Simufilam is currently in phase 3 clinical trials as a disease-modifying treatment for AD.


Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Amyloid beta-Peptides/metabolism , Filamins/metabolism , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/therapeutic use , Drug Development
9.
Neuroscience ; 473: 142-158, 2021 10 01.
Article En | MEDLINE | ID: mdl-34298123

Exposure to intense or repeated stressors can lead to depression or post-traumatic stress disorder (PTSD). Neurological changes induced by stress include impaired neurotrophin signaling, which is known to influence synaptic integrity and plasticity. The present study used an ex vivo approach to examine the impact of acute or repeated stress on BDNF-stimulated TrkB signaling in hippocampus (HIPPO) and prefrontal cortex (PFC). Rats in an acute multiple stressor group experienced five stressors in one day whereas rats in a repeated unpredictable stressor group experienced 20 stressors across 10 days. After stress exposure, slices were incubated with vehicle or BDNF, followed by immunoprecipitation and immunoblot assays to assess protein levels, activation states and protein-protein linkage associated with BDNF-TrkB signaling. Three key findings are (1) exposure to stressors significantly diminished BDNF-stimulated TrkB signaling in HIPPO and PFC such that reductions in TrkB activation, diminished recruitment of adaptor proteins to TrkB, reduced activation of downstream signaling molecules, disruption of TrkB-NMDAr linkage, and changes in basal and BDNF-stimulated Arc expression were observed. (2) After stress, BDNF stimulation enhanced TrkB-NMDAr linkage in PFC, suggestive of compensatory mechanisms in this region. (3) We discovered an uncoupling between TrkB signaling, TrkB-NMDAr linkage and Arc expression in PFC and HIPPO. In addition, a robust surge in pro-inflammatory cytokines was observed in both regions after repeated exposure to stressors. Collectively, these data provide therapeutic targets for future studies that investigate how to reverse stress-induced downregulation of BDNF-TrkB signaling and underscore the need for functional studies that examine stress-related TrkB-NMDAr activities in PFC.


Brain-Derived Neurotrophic Factor , Receptors, N-Methyl-D-Aspartate , Animals , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Neurons/metabolism , Rats , Receptor, trkB/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction
10.
Mol Neurodegener ; 16(1): 26, 2021 04 16.
Article En | MEDLINE | ID: mdl-33863362

BACKGROUND: Apolipoprotein E4 (APOE4) is associated with a greater response to neuroinflammation and the risk of developing late-onset Alzheimer's disease (AD), but the mechanisms for this association are not clear. The activation of calcium-dependent cytosolic phospholipase A2 (cPLA2) is involved in inflammatory signaling and is elevated within the plaques of AD brains. The relation between APOE4 genotype and cPLA2 activity is not known. METHODS: Mouse primary astrocytes, mouse and human brain samples differing by APOE genotypes were collected for measuring cPLA2 expression, phosphorylation, and activity in relation to measures of inflammation and oxidative stress. RESULTS: Greater cPLA2 phosphorylation, cPLA2 activity and leukotriene B4 (LTB4) levels were identified in ApoE4 compared to ApoE3 in primary astrocytes, brains of ApoE-targeted replacement (ApoE-TR) mice, and in human brain homogenates from the inferior frontal cortex of patients with AD carrying APOE3/E4 compared to APOE3/E3. Greater cPLA2 phosphorylation was also observed in human postmortem frontal cortical synaptosomes and primary astrocytes after treatment with recombinant ApoE4 ex vivo. In ApoE4 astrocytes, the greater levels of LTB4, reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) were reduced after cPLA2 inhibition. CONCLUSIONS: Our findings implicate greater activation of cPLA2 signaling system with APOE4, which could represent a potential drug target for mitigating the increased neuroinflammation with APOE4 and AD.


Apolipoprotein E4/metabolism , Calcium/pharmacology , Cerebral Cortex/enzymology , MAP Kinase Signaling System , Phospholipases A2, Cytosolic/metabolism , Amyloid beta-Peptides/pharmacology , Animals , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E3/pharmacology , Apolipoprotein E4/genetics , Apolipoprotein E4/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Cerebral Cortex/pathology , Enzyme Activation/drug effects , Heterozygote , Humans , Inflammasomes , Inflammation , Leukotriene B4/biosynthesis , Mice , Mice, Transgenic , NF-kappa B/metabolism , Neurons/drug effects , Neurons/metabolism , Oxidative Stress , Peptide Fragments/pharmacology , Phosphorylation , Protein Processing, Post-Translational , Reactive Oxygen Species , Synaptosomes/enzymology , p38 Mitogen-Activated Protein Kinases/biosynthesis
11.
Acta Neuropathol Commun ; 9(1): 71, 2021 04 15.
Article En | MEDLINE | ID: mdl-33858515

Insulin is an important hormone for brain function, and alterations in insulin metabolism may be associated with neuropathology. We examined associations of molecular markers of brain insulin signaling with cerebrovascular disease. Participants were enrolled in the Religious Orders Study (ROS), an ongoing epidemiologic community-based, clinical-pathologic study of aging from across the United States. Using cross-sectional analyses, we studied a subset of ROS: 150 persons with or without diabetes, matched 1:1 by sex on age-at-death and education. We used ELISA, immunohistochemistry, and ex vivo stimulation with insulin, to document insulin signaling in postmortem midfrontal gyrus cortex tissue. Postmortem neuropathologic data identified cerebrovascular disease including brain infarcts, classified by number (as none for the reference; one; and more than one), size (gross and microscopic infarcts), and brain region/location (cortical and subcortical). Cerebral vessel pathologies were assessed, including severity of atherosclerosis, arteriolosclerosis, and amyloid angiopathy. In separate regression analyses, greater AKT1 phosphorylation at T308 following ex vivo stimulation with insulin (OR = 1.916; estimate = 0.650; p = 0.007) and greater pS616IRS1 immunolabeling in neuronal cytoplasm (OR = 1.610; estimate = 0.476; p = 0.013), were each associated with a higher number of brain infarcts. Secondary analyses showed consistent results for gross infarcts and microinfarcts separately, but no other association including by infarct location (cortical or subcortical). AKT S473 phosphorylation following insulin stimulation was associated with less amyloid angiopathy severity, but not with other vessel pathology including atherosclerosis and arteriolosclerosis. In summary, insulin resistance in the human brain, even among persons without diabetes, is associated with cerebrovascular disease and especially infarcts. The underlying pathophysiologic mechanisms need further elucidation. Because brain infarcts are known to be associated with lower cognitive function and dementia, these data are relevant to better understanding the link between brain metabolism and brain function.


Brain/physiology , Cerebrovascular Disorders/pathology , Insulin Resistance , Aged , Aged, 80 and over , Autopsy , Cerebrovascular Disorders/epidemiology , Cross-Sectional Studies , Diabetes Complications/epidemiology , Diabetes Complications/pathology , Diabetes Mellitus , Female , Humans , Insulin/metabolism , Male , Signal Transduction/physiology
12.
Physiol Behav ; 234: 113286, 2021 05 15.
Article En | MEDLINE | ID: mdl-33321142

Emotional contagion refers to the sharing of emotional states between individuals and can cause depressive behaviors in healthy persons who live with depressed individuals. Negative emotional contagion has been observed in animal models, but the vast majority of studies are short-term and bear little resemblance to long-term human relationships. Thus, the first aim of this study was to establish an animal model of stress-induced negative emotional contagion that develops across time and between pairs. To accomplish this, we tested the hypothesis that sedentary male rats that cohabitate for five weeks with a stress-exposed female will exhibit a depression-like phenotype that is observable on behavioral and physiological measures. In addition, drawing from a comprehensive literature that describes the beneficial effects of prior exercise on stress-related behavior, we tested our second hypothesis that in males that were paired with a stressed female, prior voluntary exercise will diminish the impact of negative emotional contagion. We found that pair housing a healthy male with a stressed female led to emotional contagion; males gained less body weight, were anhedonic, demonstrated heightened anxiety-like behavior, had lower serum brain-derived neurotrophic factor (BDNF) levels, had decreased hippocampal BDNF-stimulated tyrosine receptor kinase B (TrkB) signaling and had increased pro-inflammatory cytokine expression in the hippocampus. For the most part, the five-week exercise window that occurred prior to pair housing had few effects in non-stress paired rats, but had partial, yet substantial protective effects in rats that were pair-housed with a stressed female. Specifically, stress-paired, exercised rats showed less depressive-like behavior, had partially preserved hippocampal BDNF-stimulated TrkB signaling, had normalized serum BDNF concentration, and had hippocampal cytokine and immediate early gene levels that were equivalent to controls. These preclinical findings introduce a new model of negative emotional contagion between dyads of male-female rats and support the view that inclusion of exercise programs would be beneficial for persons that may, in the future, be susceptible to negative emotional contagion.


Brain-Derived Neurotrophic Factor , Receptor, trkB , Animals , Brain-Derived Neurotrophic Factor/metabolism , Female , Hippocampus/metabolism , Male , Rats , Receptor, trkB/metabolism , Stress, Psychological , Tyrosine
13.
Ann Neurol ; 88(3): 513-525, 2020 09.
Article En | MEDLINE | ID: mdl-32557841

OBJECTIVE: To examine associations of molecular markers of brain insulin signaling with Alzheimer disease (AD) and cognition among older persons with or without diabetes. METHODS: This clinical-pathologic study was derived from a community-based cohort study, the Religious Orders Study. We studied 150 individuals (mean age at death =87 years, 48% women): 75 with and 75 without diabetes (matched by sex on age at death and education). Using enzyme-linked immunosorbent assay, immunohistochemistry, and ex vivo stimulation of brain tissue with insulin, we assessed insulin signaling in the postmortem middle frontal gyrus cortex. Postmortem data documented AD neuropathology. Clinical evaluations documented cognitive function proximate to death, based on 17 neuropsychological tests. In adjusted regression analyses, we examined associations of brain insulin signaling with diabetes, AD, and level of cognition. RESULTS: Brain insulin receptor substrate-1 (IRS1) phosphorylation (pS307 IRS1/total IRS1) and serine/threonine-protein kinase (AKT) phosphorylation (pT308 AKT1/total AKT1) were similar in persons with or without diabetes. AKT phosphorylation was associated with the global AD pathology score (p = 0.001). In contrast, IRS1 phosphorylation was not associated with AD (p = 0.536). No other associations of insulin signaling were found with the global AD score, including when using the ex vivo brain insulin stimulation method. In secondary analyses, normalized pT308 AKT1 was positively correlated with both the amyloid burden and tau tangle density, and no other associations of brain insulin signaling with neuropathology were observed. Moreover, normalized pT308 AKT1 was associated with a lower level of global cognitive function (estimate = -0.212, standard error = 0.097; p = 0.031). INTERPRETATION: Brain AKT phosphorylation, a critical node in the signaling of insulin and other growth factors, is associated with AD neuropathology and lower cognitive function. ANN NEUROL 2020;88:513-525.


Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , Cognition/physiology , Insulin/metabolism , Aged, 80 and over , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Female , Humans , Male , Signal Transduction
14.
Biochem Pharmacol ; 176: 113814, 2020 06.
Article En | MEDLINE | ID: mdl-31954716

Brain tumors, particularly high-grade glioblastomas, are a crucial public health issue due to poor prognosis and an extremely low survival rate. The glioblastoma multiforme (GBM) grows rapidly within its unique microenvironment that is characterized by active neural communications. Therefore, diverse neurotransmitters not only maintain normal brain functions but also influence glioma progression. To fully appreciate the relationship between neurotransmitters and glioma progression, we reviewed potential neurotransmitter contributors in human GBM and the much less aggressive Low-grade glioma (LGG) by combining previously published data from gene-mutation/mRNA sequencing databases together with protein-protein interaction (PPI) network analysis results. The summarized results indicate that glutamatergic and calcium signaling may provide positive feedback to promote glioma formation through 1) metabolic reprogramming and genetic switching to accelerate glioma duplication and progression; 2) upregulation of cytoskeleton proteins and elevation of intracellular Ca2+ levels to increase glutamate release and facilitate formation of synaptic-like connections with surrounding cells in their microenvironment. The upregulated glutamatergic neuronal activities in turn stimulate glioma growth and signaling. Importantly, the enhanced electrical and molecular signals from both neurons and glia propagate out to enable glioma symptoms such as epilepsy and migraine. The elevated intracellular Ca2+ also activates nitric oxide synthase to produce nitric oxide (NO) that can either promote or inhibit tumorigenesis. By analyzing the network effects for complex interaction among neurotransmitters such as glutamate, Ca2+ and NO in brain tumor progression, especially GBM, we identified the glutamatergic signaling as the potential therapeutic targets and suggest manipulation of glutamatergic signaling may be an effective treatment strategy for this aggressive brain cancer.


Brain Neoplasms/metabolism , Calcium/metabolism , Glioblastoma/metabolism , Glutamic Acid/metabolism , Signal Transduction , Animals , Brain Neoplasms/pathology , Disease Progression , Glioblastoma/pathology , Humans , Neurons/metabolism , Neurons/pathology , Nitric Oxide/metabolism
15.
Mol Psychiatry ; 25(4): 750-760, 2020 04.
Article En | MEDLINE | ID: mdl-30214040

Multiple lines of evidence point to glutamatergic signaling in the postsynaptic density (PSD) as a pathophysiologic mechanism in schizophrenia. Integral to PSD glutamatergic signaling is reciprocal interplay between GluN and mGluR5 signaling. We examined agonist-induced mGluR5 signaling in the postmortem dorsolateral prefrontal cortex (DLPFC) derived from 17 patients and age-matched and sex-matched controls. The patient group showed a striking reduction in mGluR5 signaling, manifested by decreases in Gq/11 coupling and association with PI3K and Homer compared to controls (p < 0.01 for all). This was accompanied by increases in serine and tyrosine phosphorylation of mGluR5, which can decrease mGluR5 activity via desensitization (p < 0.01). In addition, we find altered protein-protein interaction (PPI) of mGluR5 with RGS4, norbin, Preso 1 and tamalin, which can also attenuate mGluR5 activity. We previously reported molecular underpinnings of GluN hypofunction (decreased GluN2 phosphorylation) and here we show those of reduced mGluR5 signaling in schizophrenia. We find that reduced GluN2 phosphorylation can be precipitated by attenuated mGluR5 activity and that increased mGluR5 phosphorylation can result from decreased GluN function, suggesting a reciprocal interplay between the two pathways in schizophrenia. Interestingly, the patient group showed decreased mGluR5-GluN association (p < 0.01), a mechanistic basis for the reciprocal facilitation. In sum, we present the first direct evidence for mGluR5 hypoactivity, propose a reciprocal interplay between GluN and mGluR5 pathways as integral to glutamatergic dysregulation and suggest protein-protein interactions in mGluR5-GluN complexes as potential targets for intervention in schizophrenia.


Receptor, Metabotropic Glutamate 5/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism , Aged , Aged, 80 and over , Antipsychotic Agents/therapeutic use , Brain/metabolism , Excitatory Amino Acid Agents/metabolism , Female , Humans , Male , Membrane Proteins/metabolism , Phosphorylation , Post-Synaptic Density/metabolism , Prefrontal Cortex/metabolism , Receptor, Metabotropic Glutamate 5/physiology , Signal Transduction/drug effects
16.
Neurobiol Aging ; 84: 119-130, 2019 12.
Article En | MEDLINE | ID: mdl-31539648

Aberrant insulin and adipokine signaling has been implicated in cognitive decline associated with both type 2 diabetes mellitus and neurodegenerative diseases. We established methods that reliably measure insulin, adiponectin and leptin signaling, and their crosstalk, in thawed postmortem mid-frontal cortical tissue from cognitively normal older subjects with a short postmortem interval. Insulin-evoked insulin receptor (IR) activation increases activated, tyrosine-phosphorylated IRß on tyrosine residues 960, 1150, and 1151, insulin receptor substrate-1 recruitment to IRß and phosphorylated RAC-α-serine/threonine-protein kinase. Adiponectin augments, but leptin inhibits, insulin signaling. Adiponectin activates adiponectin receptors to induce APPL1 binding to adiponectin receptor 1 and 2 and T-cadherin and downstream adenosine monophosphate-dependent protein kinase phosphorylation. Insulin inhibited adiponectin-induced signaling. In addition, leptin-induced leptin receptor (OB-R) signaling promotes Janus kinase 2 recruitment to OB-R and Janus kinase 2 and downstream signal transducer and activator of transcription 3 phosphorylation. Insulin enhanced leptin signaling. These data demonstrate insulin and adipokine signaling interactions in human brain. Future studies can use these methods to examine insulin, adiponectin, and leptin metabolic dysregulation in aging and disease states, such as type 2 diabetes and Alzheimer's disease-related dementias.


Adipokines/metabolism , Brain/pathology , Insulin/metabolism , Signal Transduction , Aging/metabolism , Brain/metabolism , Humans , Leptin/metabolism , Postmortem Changes
17.
Crit Rev Oncog ; 24(3): 243-250, 2019.
Article En | MEDLINE | ID: mdl-32422022

Glioblastoma multiforme (GBM) is the most common and malignant glial tumor. Although pro-growth, pro-survival, and pro-metastasis insulin signaling has been proposed to be a prominent driver of GBM progression, the insulin receptor (IR) signaling cascade in GBM has not been fully elucidated. Upon binding of the insulin and insulin-like growth factor-1 (IGF-1), IR is activated by increasing the levels of tyrosine-phosphorylated (pY) IRP on tyrosine 960, 1150, and 1151 residues as well as IRS-1 recruitment to IRß. This leads to activation of the downstream PI3K/AKT/GSK3 or mTORC1/ERK, many of which are implicated in tumorigenesis including breast and liver carcinomas. Here, we directly compare insulin signaling in U87 MG human glioblastoma to primary human astrocytes by assessing the levels of activated IRß, IRS-1 recruitment to IRß, as well as downstream activated mitogenic ERK2 and pro-survival AKT1 under nonstimulated conditions and induced by 1 nM insulin. Our results show insulin receptor and its downstream signaling molecules are robustly hyperactivated. This mechanism renders a reduced insulin-induced response. Our findings provide a mechanism through which GBM develops and grows aggressively even without insulin.


Antigens, CD/metabolism , Glioblastoma/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/metabolism , Cell Line, Tumor , Glioblastoma/pathology , Humans , Signal Transduction/physiology
18.
Nat Rev Neurol ; 14(3): 168-181, 2018 03.
Article En | MEDLINE | ID: mdl-29377010

Considerable overlap has been identified in the risk factors, comorbidities and putative pathophysiological mechanisms of Alzheimer disease and related dementias (ADRDs) and type 2 diabetes mellitus (T2DM), two of the most pressing epidemics of our time. Much is known about the biology of each condition, but whether T2DM and ADRDs are parallel phenomena arising from coincidental roots in ageing or synergistic diseases linked by vicious pathophysiological cycles remains unclear. Insulin resistance is a core feature of T2DM and is emerging as a potentially important feature of ADRDs. Here, we review key observations and experimental data on insulin signalling in the brain, highlighting its actions in neurons and glia. In addition, we define the concept of 'brain insulin resistance' and review the growing, although still inconsistent, literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity and insulin resistance. Lastly, we review evidence of intrinsic brain insulin resistance in ADRDs. By expanding our understanding of the overlapping mechanisms of these conditions, we hope to accelerate the rational development of preventive, disease-modifying and symptomatic treatments for cognitive dysfunction in T2DM and ADRDs alike.


Brain/metabolism , Dementia/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin Resistance , Insulin/metabolism , Humans
19.
Front Physiol ; 8: 457, 2017.
Article En | MEDLINE | ID: mdl-28713286

Experiments in rodents have elucidated some of the molecular mechanisms underlying repetitive transcranial magnetic stimulation (rTMS). These studies may be useful in a translational perspective so that future TMS studies in rodents can closely match human TMS protocols designed for therapeutic purposes. In the present work we will review the effects of rTMS on glutamate neurotransmission which in turn induce persistent changes in synaptic activity. In particular, we will focus on the role of NMDA and non-NMDA transmission and on the permissive role of BDNF-TrKB interaction in the rTMS induced after-effects.

20.
Alzheimers Res Ther ; 9(1): 54, 2017 07 27.
Article En | MEDLINE | ID: mdl-28750690

BACKGROUND: The apolipoprotein E ε4 (APOE4) genotype is a prominent late-onset Alzheimer's disease (AD) risk factor. ApoE4 disrupts memory function in rodents and may contribute to both plaque and tangle formation. METHODS: Coimmunoprecipitation and Western blot detection were used to determine: 1) the effects of select fragments from the apoE low-density lipoprotein (LDL) binding domain and recombinant apoE subtypes on amyloid beta (Aß)42-α7 nicotinic acetylcholine receptor (α7nAChR) interaction and tau phosphorylation in rodent brain synaptosomes; and 2) the level of Aß42-α7nAChR complexes in matched controls and patients with mild cognitive impairment (MCI) and dementia due to AD with known APOE genotypes. RESULTS: In an ex vivo study using rodent synaptosomes, apoE141-148 of the apoE promotes Aß42-α7nAChR association and Aß42-induced α7nAChR-dependent tau phosphorylation. In a single-blind study, we examined lymphocytes isolated from control subjects, patients with MCI and dementia due to AD with known APOE genotypes, sampled at two time points (1 year apart). APOE ε4 genotype was closely correlated with heightened Aß42-α7nAChR complex levels and with blunted exogenous Aß42 effects in lymphocytes derived from AD and MCI due to AD cases. Similarly, plasma from APOE ε4 carriers enhanced the Aß42-induced Aß42-α7nAChR association in rat cortical synaptosomes. The progression of cognitive decline in APOE ε4 carriers correlated with higher levels of Aß42-α7nAChR complexes in lymphocytes and greater enhancement by their plasma of Aß42-induced Aß42-α7nAChR association in rat cortical synaptosomes. CONCLUSIONS: Our data suggest that increased lymphocyte Aß42-α7nAChR-like complexes may indicate the presence of AD pathology especially in APOE ε4 carriers. We show that apoE, especially apoE4, promotes Aß42-α7nAChR interaction and Aß42-induced α7nAChR-dependent tau phosphorylation via its apoE141-148 domain. These apoE-mediated effects may contribute to the APOE ε4-driven neurodysfunction and AD pathologies.


Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Lymphocytes/metabolism , Peptide Fragments/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Aged , Aged, 80 and over , Amyloid beta-Peptides/pharmacology , Animals , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Dose-Response Relationship, Drug , Female , Frontal Lobe/ultrastructure , Humans , Lymphocytes/drug effects , Male , Peptide Fragments/pharmacology , Phosphorylation/drug effects , Protein Binding/drug effects , Rats , Rats, Sprague-Dawley , Receptors, LDL/metabolism , Statistics as Topic , Synaptosomes/metabolism , Synaptosomes/ultrastructure , tau Proteins/metabolism
...